Predicting temperature-dependent solid vapor pressures of explosives and related compounds using a quantum mechanical continuum solvation model.

نویسندگان

  • Sufian Alnemrat
  • Joseph P Hooper
چکیده

Temperature-dependent vapor pressures of solid explosives and their byproducts are calculated to an accuracy of 0.32 log units using a modified form of the conductor-like screening model for real solvents (COSMO-RS). Accurate predictions for solids within COSMO-RS require correction for the free energy of fusion as well as other effects such as van der Waals interactions. Limited experimental data on explosives is available to determine these corrections, and thus we have extended the COSMO-RS model by introducing a quantitative structure-property relationship to estimate a lumped correction factor using only information from standard quantum chemistry calculations. This modification improves the COSMO-RS estimate of ambient vapor pressure by more than 1 order of magnitude for a range of nitrogen-rich explosives and their derivatives, bringing the theoretical predictions to within typical experimental error bars for vapor pressure measurements. The estimated temperature dependence of these vapor pressures also agrees well with available experimental data, which is particularly important for estimating environmental transport and gas evolution for buried explosives or environmentally contaminated locations. This technique is then used to predict vapor pressures for a number of explosives and degradation products for which experimental data is not readily available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Vapor Pressures and Enthalpies of Vaporization Using a COSMO Solvation Model

We have developed a general predictive method for vapor pressures and enthalpies of vaporization based on the calculation of the solvation free energy that consists of three components; the electrostatic, dispersion, and cavity formation contributions. The electrostatic contribution is determined using the quantum mechanical COSMO solvation model. Thermodynamic perturbation theory for hard-core...

متن کامل

Dispersion and repulsion contributions to the solvation free energy: Comparison of quantum mechanical and classical approaches in the polarizable continuum model

We report a systematic comparison of the dispersion and repulsion contributions to the free energy of solvation determined using quantum mechanical self-consistent reaction field (QM-SCRF) and classical methods. In particular, QM-SCRF computations have been performed using the dispersion and repulsion expressions developed in the framework of the integral equation formalism of the polarizable c...

متن کامل

Using the Genetic Algorithm based on the Riedel Equation to Predict the Vapor Pressure of Organic Compounds

In this paper, a genetic algorithm (GA) has been used to predict the vapor pressure of pure organic compounds based on Riedel equation. Initially, the coefficients of Riedel equation were optimized. Then, a new term was added to the original Riedel equation to reduce error of the model in prediction of vapor pressures of pure materials. 110 components at two different pressures (10 and 100 kPa)...

متن کامل

An Efficient Method for Correlation of Vapor Pressure of Gaseous Compounds Containing C-H-O

Prediction of available vapor pressure data in the case of compounds containing C-H-O led to derivations and recommendations of standard equations for this property. The accuracy of vapor pressure estimations is essential to use as a basis to calculate acentric factor, thermal and equilibrium properties. In this study, according to the previous work, an accurate equation to estimate vapor press...

متن کامل

Non-Axisymmetric Time-Dependent Creep Analysis in a Thick-Walled Cylinder Due to the Thermo-mechanical loading

In this study, the non-linear creep behaviour of a thick-walled cylinder made of stainless steel 316 is investigated using a semi-analytical method. The thick-walled cylinder is under a uniform internal pressure and a non-axisymmetric thermal field as a function of the radial and circumferential coordinates. For the high temperature and stress levels, creep phenomena play a major role in stress...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 117 9  شماره 

صفحات  -

تاریخ انتشار 2013